Alcohol oxidase (AOX1) from Pichia pastoris is a novel inhibitor of prion propagation and a potential ATPase.

نویسندگان

  • Hong Zhang
  • Harriët M Loovers
  • Li-Qiong Xu
  • Mingzhu Wang
  • Pamela J E Rowling
  • Laura S Itzhaki
  • Weimin Gong
  • Jun-Mei Zhou
  • Gary W Jones
  • Sarah Perrett
چکیده

Previous results suggest that methylotrophic yeasts may contain factors that modulate prion stability. Alcohol oxidase (AOX), a key enzyme in methanol metabolism, is an abundant protein that is specific to methylotrophic yeasts. We examined the effect of Pichia pastoris AOX1 on prion phenotypes in Saccharomyces cerevisiae. The S. cerevisiae prion states [PSI(+)] and [URE3] arise from aggregation of the proteins Sup35p and Ure2p respectively, and correlate with the ability of Sup35p and Ure2p to form amyloid-like fibrils in vitro. We found that expression of P. pastoris AOX1 in S. cerevisiae had no effect on propagation of the [PSI(+)] prion, but inhibited propagation of [URE3]. Addition of AOX1 early in the time-course of fibril formation inhibits Ure2p fibril formation in vitro. AOX1 has not previously been identified as an ATPase. However, we discovered that in addition to its flavin adenine dinucleotide-dependent AOX activity, AOX1 possesses ATPase activity. This study identifies AOX1 as a novel prion inhibitory factor and a potential ATPase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Production of Recombinant Human Granulocyte-Colony Stimulating Factor by Pichia pastoris

Human granulocyte-colony stimulating factor (hG-CSF) cDNA was expressed in the methylotrophic yeast Pichia pastoris under the control of the alcohol oxidase (AOX1) promoter. An expression vector for hG-CSF secretion was constructed using vector pPIC9. Higher levels of hG-CSF was obtained using a P. pastoris Mut+ (methanol utilization fast) phenotype. The effects of environmental factors such as...

متن کامل

A novel methanol-free Pichia pastoris system for recombinant protein expression

BACKGROUND As one of the most popular expression systems, recombinant protein expression in Pichia pastoris relies on the AOX1 promoter (P AOX1 ) which is strongly induced by methanol. However, the toxic and inflammatory nature of methanol restricts its application, especially in edible and medical products. Therefore, constructing a novel methanol-free system becomes necessary. The kinases inv...

متن کامل

Crystal Structure of Alcohol Oxidase from Pichia pastoris

FAD-dependent alcohol oxidases (AOX) are key enzymes of methylotrophic organisms that can utilize lower primary alcohols as sole source of carbon and energy. Here we report the crystal structure analysis of the methanol oxidase AOX1 from Pichia pastoris. The crystallographic phase problem was solved by means of Molecular Replacement in combination with initial structure rebuilding using Rosetta...

متن کامل

Evaluation of pH/buffering conditions effect on the optimization of Recombinant Human Erythropoietin expression in the methylotrophic yeast, Pichia pastoris

Expression of recombinant proteins and drugs in Pichia pastoris has been in development since the late 1980s and the number of recombinant proteins produced in P. pastoris has increased significantly in the past several years. Unlike bacteria, this strain is capable of producing complex proteins with post translational modifications such as correct folding, glycosylation, proteolytic maturation...

متن کامل

An upstream activation sequence controls the expression of AOX1 gene in Pichia pastoris.

Alcohol oxidase I gene (AOX1) promoter (P(AOX1)) is a key promoter in the methylotrophic yeast Pichia pastoris. To identify the cis-acting element in the AOX1 promoter, we constructed expression plasmids in which the green fluorescent protein (GFP) gene coding region was fused to a series of internal deletion mutants of the AOX1 promoter. By analyzing the expression and transcription level of G...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular microbiology

دوره 71 3  شماره 

صفحات  -

تاریخ انتشار 2009